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Abstract

We studied the sensitivity of satellite imagery object de-
tection models to adversarial input images. We began by
training the object detection model Tiny-YOLOv3 on the
dataset Cars Overhead With Context (COWC), which con-
tains over 27,000 distinct full-color satellite images of cars
with bounding boxes. After using transfer-learning to train
our object detector, we studied its susceptibility to three
types of adversarial inputs: Random noise, images pro-
duced using the fast gradient sign method (FGSM), and an
adversarial patch. These attacks were inspired by seminal
and state-of-the-art research in adversarial training. Un-
surprisingly, we found that random noise - our control ex-
periment - did not significantly reduce model accuracy, as
measured by mean average precision. In contrast, FGSM
attacks and our adversarial patch did undermine model per-
formance without significantly changing the content of an
input image. However, given results in the literature, we ex-
pect that these attacks can be further refined to be far more
effective. Ultimately, as this area of object detection has
not been deeply studied by existing literature, our results
present clear applications to attacking and defending satel-
lite imagery detectors.

1. Introduction

Recent research has demonstrated how deep learning
models for object detection may be highly sensitive to small
perturbations in input images.1 For example, some papers
have reduced object detection performance by over 50% by
only modifying a single pixel in an input image.2 Recent re-
search papers have proposed a variety of attack mechanisms
for undermining deep learning models, from changing a sin-
gle pixel in an input image to recoloring an image in the di-
rection of the gradient of the loss function (an attack known
as FGSM, or the fast gradient sign method).3 We sought to
study this problem in the context of satellite imagery object

1. Goodfellow, Shlens, and Szegedy 2014.
2. Su, Vargas, and Sakurai 2019.
3. Su, Vargas, and Sakurai 2019; Goodfellow, Shlens, and Szegedy

2014; Madry et al. 2017.

detection. Are deep learning models for detecting objects
in satellite images sensitive to these attacks?

We were particularly interested in this project due to its
application of adversarial techniques to a problem not sig-
nificantly studied in the literature; while past projects and
papers have examined adversarial attacks on facial recog-
nition and object detection in datasets such as ImageNet
or PASCAL VOC,4 far fewer research groups have exam-
ined this problem in satellite imagery.5 Furthermore, satel-
lite imagery object detection represents an important appli-
cation of deep learning to national security and humanitar-
ian work. Data on shipping and travel patterns has been
widely used by governments and non-governmental orga-
nizations to track economic activity, population movement,
and conflict.6 As a result, it is important for humanitarian
and governmental organizations to understand these mod-
els’ weaknesses.

Prior to this project, I did not have any experience using
PyTorch or training object detection models; by applying
cutting-edge adversarial techniques to a relatively unstudied
area of object detection, I hoped to make a novel and timely
contribution to understanding the capabilities and vulnera-
bilities of deep learning models while also gaining the req-
uisite skills for performing deep learning research.

1.1. Literature Review

The field of generating adversarial examples is relatively
nascent. Ian Goodfellow’s 2014 paper “Explaining and Har-
nessing Adversarial Examples” outlined the fast gradient
sign method (FGSM) for perturbing sample images using
the data gradient of a model’s loss function; this paper also
relied on random perturbations as control experiments for
comparing performance. Since then, researchers have re-
leased open-source software for generating adversarial im-
ages, such as the library Cleverhans.7 In our project, we
began by implementing baseline and adversarial techniques
introduced in Goodfellow’s 2014 paper, such as adding ran-
dom noise and performing FGSM attacks.

4. Deng et al. 2009; Everingham et al. 2010.
5. Milich and Karr, n.d.
6. Doshi, Basu, and Pang 2018.
7. “tensorflow/cleverhans: An adversarial example library for con-

structing attacks, building defenses, and benchmarking both” 2019.
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The paper “Adversarial Patch,” which was published by
researchers at the MIT Media Lab in 2017, demonstrated
how a physical patch could be created to undermine ob-
ject detection models. The authors used a technique called
an “Expectation over Transformation” (EoT) attack that re-
quires maximizing an objective function to achieve mis-
classifications across different orientations of a physical ob-
ject. When placed alongside a 3D-printed turtle, the patch
caused the VGG-16 object detection model to miscatego-
rize the turtle as a rifle from multiple angles.8 We dis-
cuss the optimization problem in an EoT attack in Equation
(2). A more recent paper titled “Fooling automated surveil-
lance cameras: adversarial patches to attack person detec-
tion” used similar techniques to confuse person detection
models.9 Other published papers have examined techniques
for undermining state-of-the-art real-time object detectors,
such as R-CNN and YOLO, using expectation over trans-
formation and other attack mechanisms.10

In preparation for this project, we also examined two re-
cent deep learning papers on state-of-the-art real-time ob-
ject detection: “YOLOv3: An Incremental Improvement”
and “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks.”11 YOLOv3 divides im-
ages into cells that are used to generate bounding boxes for
potential objects; the most recent version of the network
also relies on stacked 3 × 3 filter convolutions for feature
extraction. R-CNNs rely on a convolutional network to pro-
pose regions that are subsequently used as inputs to another
object detection model. Ultimately, we chose to test our at-
tack mechanisms on Tiny-YOLOv3 due to the model’s re-
cency, relatively fast training speeds, efficient test-time per-
formance, and the availability of an easily extendable im-
plementation in PyTorch.12

2. Methods
This section discusses our overall methodology for train-

ing our object detector and generating adversarial examples.

2.1. Object detection

The YOLO - “You Only Look Once” - family of ob-
ject detectors provide high accuracy and notably fast predic-
tions. YOLO’s uniquely swift performance stems from its
ability to make predictions for multiple objects using only
one pass through the entire network. The original YOLOv1
network divided images into a grid and predicted bounding
boxes in each distinct cells;13 the YOLOv1 network’s over-

8. Brown et al. 2017.
9. Thys, Van Ranst, and Goedeme 2019.

10. Lu, Sibai, and Fabry 2017; Chen et al. 2018.
11. Redmon and Farhadi 2018; Ren et al. 2015.
12. “michhar/pytorch-yolo-v3-custom: A PyTorch implementation of

the YOLO v3 object detection algorithm for training on custom data with
video demo.” 2019.

13. Redmon et al. 2016.

all architecture resembled Google LeNet and used 24 con-
volutional layers.14 YOLOv2 and YOLOv3 provided bet-
ter performance and new algorithms for detecting object
bounding boxes; in YOLOv3, the network was significantly
expanded to include a feature extractor with 53 convolu-
tional layers.15 YOLOv3 is a fully convolutional network
that does not use pooling layers. Instead, it relies on con-
volutions with a stride of two for downsampling and 1x1
convolutions to make predictions. YOLOv3 also uses “that
newfangled residual network stuff” (i.e. residual connec-
tions between groups of convolutional layers) to prevent
loss of low level features.16

Before discussing our performance metrics for training
YOLO on satellite imagery, we provide a brief overview of
the YOLOv3 loss function. Because of length constraints,
we do not provide the full mathematical formula for the loss
function; this is available in the original YOLOv1 paper.17

The YOLO loss function sums three terms:

L = Lclassification + Llocalization + Lconfidence

Classification loss measures the squared error of the prob-
ability of each class when an object is detected in a given
cell of an image. Localization loss computes the squared
error of predicted bounding box positions and shapes. Con-
fidence loss sums the squared error of the model’s confi-
dence that a given object is or is not in a given cell of an
image.18

To train our satellite imagery object detector, we used an
open-source PyTorch implementation of YOLOv319 and a
set of pretrained weights for Tiny-YOLOv3 on the object
detection dataset COCO. Because of our dataset’s relatively
small size and constriants on time and computing hardware,
we chose to use the Tiny YOLOv3 model, which is signifi-
cantly smaller than the full YOLOv3 network. This enabled
us to more quickly prototype and test attack mechanisms.

2.1.1 Performance metrics

Intersection over union (IoU) and average precision are
standard metrics for measuring object detection perfor-
mance. Given a model’s predicted object bounding box
and a known ground-truth bounding box, we can score the
predicted bounding box using its IoU with the ground-truth
box:

14. Szegedy et al. 2015.
15. Redmon and Farhadi 2018.
16. Redmon and Farhadi 2018; “How to Implement a YOLO (v3) Object

Detector from Scratch in PyTorch: Part 1” 2019.
17. Redmon et al. 2016.
18. “Real-time Object Detection with YOLO, YOLOv2 and now

YOLOv3” 2019.
19. “michhar/pytorch-yolo-v3-custom: A PyTorch implementation of

the YOLO v3 object detection algorithm for training on custom data with
video demo.” 2019.
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IoU(bbox1, bbox2) =
intersection area(bbox1, bbox2)

union area(bbox1, bbox2)

Note that if the two bounding boxes are exactly the same,
their IoU is exactly 1; if they are completely disjoint, their
IoU is 0. When evaluating object detection models, an IoU
threshold is chosen for differentiating true from false pos-
itive. The value of 0.5 IoU is common in object detection
literature.20 However, we chose to test model performance
on IoU values of 0.3 and 0.4 because a significant quantity
of our train and test images had irregularly positioned or
overlapping boxes.21 Furthermore, unlike many object de-
tection datasets, where objects may occupy a large portion
of an image, a single car may only occupy one percent of
a training image. Given the above formulation for IoU, we
can determine if a prediction is correct if it has IoU with
a ground truth bounding box that is greater than a certain
threshold.

Object detection networks are frequently evaluated by
their average precision. First, predictions from a given
dataset are ordered by decreasing confidence. Then, for
each prediction, running values of precision and recall are
calculated; precision equals the number of true positives di-
vided by true and false positives, and recall equals the num-
ber of true positives divided by the number of true positives
plus false negatives. Given precision and recall values for
the model’s output on the testing dataset, average precision
equals the area under the precision recall curve.22 The mean
average precision (mAP) is the average precision avereged
across all classes; in our application of detecting one class
- sedan cars - mAP is equal to AP and is used interchange-
ably.

2.2. Generating adversarial examples

In this section, we discuss how our three different cate-
gories of adversarial input images were generated. Within
the field of generating adversarial examples, attack mecha-
nisms are divided into two categories: Whitebox and black-
box attacks. While whitebox attacks assume an attacker has
access to the internal parameters of a given model, an adver-
sary may only observe a model’s output when performing
blackbox attacks.23

1. Random noise: Our baseline or control attack mecha-
nism involved sampling random noise from a Gaussian

20. Hui 2019.
21. It also required a nontrivial amount of time to evaluate mAP on dis-

tinct datasets, so we chose to use metrics that provided more insight into
our attack effectiveness.

22. Hui 2019.
23. Researchers have demonstrated how an adversary may use a model’s

output to train a comparable model in the blackbox scenario; this enables
the attacker to approximate the unknown model’s gradient and loss. (Pa-
pernot et al. 2017)

distribution and adding it to our input image. Random
noise has been previously used as a control experiment
in existing literature on generating adversarial exam-
ples.24 Random noise is a blackbox attack that does
not require access to the model.

2. FGSM attacks: After running an image x through the
model, an FGSM attack perturbs the image x by a cer-
tain amount in the direction of the sign of the data gra-
dient, i.e.:25

xadv = x+ ε sign(∇xJ(θ, x, y)) (1)

FGSM is a whitebox attack mechanism intended to
cause misclassifications; it requires access to the gra-
dient of the model’s loss function J(θ, x, y).

3. Adversarial patch: The 2017 paper “Synthesiz-
ing Robust Advesarial examples” paper proposes a
method known as an “Expectation over Transfor-
mation” (EOT) attack that is capable of generating
adversarial examples that undermine an object de-
tector across different orientations and viewpoints.26

The EOT attack represents the following optimization
problem, where x is the original input image, x′ is
the perturbed adversarial image, t(x) is a transforma-
tion of the input x, yt is the desired target class, and
P (y|t(x)) is the probability that transformed image
t(x) is classified as y. This optimization attempts to
maximize the probability that the transformed image
x′ is classified as a target class yt subject to the con-
straint that x′ can only be perturbed a limited amount.

argmax
x′

Et∼T [logP (yt|t (x′))]

subject to Et∼T [d (t (x′) , t(x))] < ε
(2)

This method is the most complex attack mechanism
tested in this project. Figure 1 provides an overview of
the training process for creating the adversarial patch.

The patch is initialized randomly. Then, using our val-
idation dataset, we rotate and translate the patch before
applying it to an image. We then compute the YOLO
loss for the given patch and perturb the patch in the
direction of the model’s loss gradient.

24. Goodfellow, Shlens, and Szegedy 2014.
25. Goodfellow, Shlens, and Szegedy 2014.
26. Athalye et al. 2017.
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Figure 1: Training procedure for generat-
ing an adversarial patch.

We trained our patch using a significantly modified
open-source implementation of the training procedure
used in the 2017 paper “Adversarial Patch.”27 Our
patch is set to cover 5% of the input image, which re-
sults in a patch that is roughly 100×100 pixels. Figure
8 displays the results of training our patch on the vali-
dation dataset.

3. Dataset and features

Multiple publicly accessible datasets exist for training
object detection models on satellite imagery. Popular
datasets include “Cars Overhead With Context” (COWC),
“xView: Objects in Context in Overhead Imagery,” and
“DOTA: Large-scale Dataset for Object Detection in Aerial
Images.”28 We chose to train our model on the COWC
dataset, which was released by Lawrence Livermore Na-
tional Laboratory. The COWC dataset includes over 27,000
satellite images with a total of 61,000 bounding box an-
notations. We selected this dataset because it provided a
sufficiently large number of training images with relatively
few classes; while DOTA and xView contain annotations of
numerous different objects, including planes, helicopters,
swimming pools, bridges, and basketball courts, the COWC
dataset is designed specifically for detecting cars.

We used a version of the COWC dataset called “COWC-
M” which formats ground-truth labels in a manner that
matches the expected YOLO annotation format of:29

<object-class> <x> <y> <width> <height>

Images in the COWC-M dataset are 256 × 256 pixels. In
Figure 2, we provide an example of a single image in
the COWC-M dataset with one ground-truth bounding box
around a single car:

27. “jhayes14/adversarial-patch: PyTorch implementation of adversarial
patch” 2019.

28. Mundhenk et al. 2016; Lam et al. 2018; Xia et al. 2018.
29. “Specific format of annotation Issue 60 AlexeyAB/Yolo mark” 2019.

Figure 2: Example aerial photo from the COWC
dataset. One blue bounding box surrounds the single
car in the image.

For clarity, we provide a single ground-truth label below.
Note that x and y) (i.e. the second and third numbers in the
label) represent the center of the bounding box.

1 0.07421875 0.4140625 0.125 0.125

The above label specifies a bounding box with width
and height equal to 0.125 × 256 centered at (x, y) =
(0.07421875× 256, 0.4140625× 256).

It is important to note that we observed a general lack of
consistency in the size of bounding boxes and the position
of cars within them. Although most boxes are squares, the
cars are frequently not positioned exactly at the center of
boxes, and, in many examples, the hood or rear of the car
is cut off. Because of these irregularities in ground-truth
bounding boxes, we chose to measure mAP using thresh-
olds of 0.3 and 0.4. These metrics also seemed appropriate
given how small cars are in each training photo; while ob-
jects in the COCO dataset may occupy one half or one third
of an input image, a car may only occupy a small percentage
(as small as one percent) of a COWC photo.

3.1. Preprocessing

We performed a limited number of preprocessing steps
to format the COWC dataset for training with YOLOv3.
YOLO does not require image normalization or transfor-
mation; as a result, we only focused on aggregating and
formatting the COWC images for training with YOLO. Be-
cause the YOLO network utilizes only convolutional layers,
it can accept inputs of different dimensions. In training the
basic object detector, we performed a series of data augmen-
tation steps, including random recolorings and horizontal
flips. When training our adversarial patch, we implemented
our own library of data augmentation functions for rotating
and flipping images.

To construct our training, validation, and test datasets,
we aggregated the distinct COWC-M imagery datasets
from Toronto (Canada), Utah (USA), and Selwyn (New
Zealand).30 We used a 0.8-0.1-0.1 train-validation-test split

30. Mundhenk et al. 2016.
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Figure 3: Model output superimposed with ground
truth bounding boxes. Ground truth boxes are in
green; model output is in red.

across a randomly shuffled aggregate dataset from all loca-
tions combined. This ensured our model could both train
and test on cars in different contexts from rural and ur-
ban environments. Given this configuration, we had almost
19000 training samples, roughly 2400 validation samples,
and approximately 2400 held-out test samples.

4. Results
4.1. Object detection results

We optimized our hyperparameters using our validation
set. Although one published YOLO model was trained us-
ing SGD and weight decay, we observed better training per-
formance (i.e. faster convergence) training Tiny-YOLOv3
using the Adam optimizer.31 We also used a decaying learn-
ing rate starting at 0.001, and a batch size of 4 images.3233

Because we chose to perform transfer-learning on Tiny-
YOLO using pretrained weights from the COCO dataset,
we ultimately saw good performance unfreezing the last
three layers of the network. Figure 3 provides one sam-
ple image of our model’s output superimposed with ground
truth bounding boxes from the COWC dataset.

Our object detection results are reported in Table 1. Be-
cause of the wide variance in the size and positioning of car
bounding boxes in the COWC-M dataset (this is discussed
further in Section 3), we chose to primarily measure per-
formance using AP30 and AP40 instead of AP50 and AP75,
which are metrics used in the YOLOv3 paper. We also
selected these metrics because the performance of Tiny-
YOLOv3 is generally reported to be considerably lower
than that of YOLOv3.34 In many training images, bounding
boxes appear to arbitrarily extend well past the cars inside
them, which may explain why our model has relatively low
AP50 scores.

31. Redmon and Farhadi 2017.
32. Note that the full YOLOv3 network is generally trained with a much

larger batch size.
33. Kingma and Ba 2014.
34. “YOLO: Real-Time Object Detection” 2019.

Our model’s relatively good performance on the Selwyn
images in the training set suggests that the model is not
overfitting. Instead, its lower performance on the Utah and
Toronto data suggests that we could have further optimized
our training procedure or used the full YOLOv3 model.

Dataset mAP30 mAP40

All test 0.21 0.16
Utah (1247 images) 0.17 0.14
Selwyn (232 images) 0.48 0.34
Toronto (882 images) 0.23 0.20

Table 1: Per-dataset object detection results.

4.2. Random noise results

Table 2 provides the results of adding norm-constrained
Gaussian random noise to input images.

Dataset mAP30 mAP40

All test 0.20 0.14
Utah (1247 images) 0.14 0.11
Selwyn (232 images) 0.46 0.23
Toronto (882 images) 0.21 0.15

Table 2: Model output on images perturbed
with random noise.

4.3. FGSM results

Table 3 provides the results of performing an FGSM at-
tack on input images. Note that we constrained the norm of
the image perturbation to be approximately equal to that of
the random noise perturbation performed above.

Dataset mAP30 mAP40

All test 0.14 0.07
Utah (1247 images) 0.09 0.03
Selwyn (232 images) 0.19 0.13
Toronto (882 images) 0.22 0.09

Table 3: Model output on images perturbed
with an FGSM attack.

4.4. Adversarial patch results

Table 4 reports the results of running our object detector
on images with our adversarial patch applied. The patch is
applied to a random location in the image at a random rota-
tion (as is done during the EoT optimization procedure).35

35. We also considered using a saliency map from YOLOv3 trained on
COCO to choose a location for the patch, but existing literature uses a
random location.
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Dataset mAP30 mAP40

All test 0.13 0.09
Utah (1247 images) 0.11 0.06
Selwyn (232 images) 0.23 0.12
Toronto (882 images) 0.16 0.08

Table 4: Model output on images perturbed
with an adversarial patch that occupies 5% of
the image.

5. Discussion

Although our model’s AP40 results on unperturbed train-
ing images are significantly lower than published results of
YOLOv3 on the COCO dataset (mAP50 of 57.936), mul-
tiple factors explain this disparity. One principal differ-
ence is that we chose to use Tiny-YOLOv3 instead of the
full YOLOv3 model. Even tough detailed results on Tiny-
YOLOv3 could not be found in published research, one
website lists the mAP for Tiny-YOLOv3 as 33.1, which is
more similar to our results.37 This is unsurprising as Tiny-
YOLOv3 is significantly less complex than YOLOv3. An-
other explanatory factor is the relatively small size of our
training datset; while the COCO dataset used to train and
test YOLOv3 has over 330,000 images, our satellite im-
agery dataset, which was used for transfer learning, has only
27,000 images.38 Generally, these differences appear to be
largely due to our use of the much smaller Tiny-YOLOv3
network.

It is both notable and relatively unsurprising that our
model achieves very strong results on the raw Selwyn
dataset (mAP30 of 0.48 and mAP40 of 0.34) and weaker per-
formance on the other imagery datasets. The Selwyn dataset
consists of a relatively homogeneous group of photos of
cars on green, rural backgrounds. Over 58% of photographs
in the Selwyn dataset have only a single ground-truth ex-
ample; another 20% have only two ground-truth bounding
boxes. As a result, it was likely far easier for our model to
identify and construct bounding boxes for a single car with
a green or dirt background. Our model does not perform as
well on the Toronto and Utah datasets; in both datasets, cars
frequently appear against grey or road backgrounds, and nu-
merous cars may appear in a single input image. Given our
limited training dataset and use of the Tiny-YOLOv3 net-
work, our model may simply not have learned to identify
cars as well in these contexts.

Random noise achieved limited results as an attack
mechanism. In almost all instances, model performance
decreased - unsurprisingly - but was not significantly re-
duced. On the Selwyn dataset, mAP30 remained roughly

36. Redmon and Farhadi 2018.
37. “YOLO: Real-Time Object Detection” 2019.
38. Lin et al. 2014.

Figure 4: Example of our model’s output on an im-
age perturbed by random noise. On the left is the per-
turbed image, and the right is the random noise added.
For better viewing, the Gaussian noise on the right is
scaled to occupy the color range from 0 to 1.

Figure 5: Model output on the same image as in Fig-
ure 4 but with no random perturbation added. The
bounding box is more horizontally centered around
the car.

the same while mAP40 decreased, perhaps suggesting that
random noise impaired the quality of our model’s bounding
boxes but did not significantly impede object identification.
The observation that AP40 decreased for all datasets also
supports this hypothesis. The example photos provided in
Figures 4 and 5 provide additional qualitative evidence to
support this theory about our model’s performance under
random noise perturbations. The bounding box on the left
of Figure 4 is offset from the center of the car (note that the
purple car in the image is undetected). In the same image
without random perturbations, which is depicted in Figure
5, the bounding box is more properly centered around the
car. As a result, the bounding box in Figure 4 likely has a
lower IoU score than the bounding box in Figure 5.

FGSM attacks provided a more effective mechanism for
undermining our object detector. On the Selwyn dataset,
mAP40 decreased to 0.19, which is lower than when im-
ages were perturbed with random noise. Figures 6 and
7 showcase examples of our model’s output on the same
training image with and without FGSM perturbations. Al-
though the perturbed image displayed on the left of Figure
6 is imperceptibly different from the image in Figure 7, the
model fails to identify the single car pictured. It is notable
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Figure 6: Example of our model’s output on an im-
age perturbed by an FGSM attack. On the left is the
modified image, and the right is the FGSM perturba-
tion scaled to occupy the color range from 0 to 1. The
model fails to detect the white car in the top left of
the photo, which it does detect in the raw image as
displayed in Figure 7.

Figure 7: Model output on the same image as in Fig-
ure 6 but with no FGSM perturbation. The model
clearly identifies the car correctly.

that FGSM attacks were particularly effective on the Utah
dataset; this may be because the Utah dataset represented
over half of the test images, so perhaps FGSM attacks -
which use the model’s gradient - somewhat overfit to these
images.

Our adversarial patch represented a surprisingly effec-
tive attack algorithm. Unlike random noise and FGSM at-
tacks, the patch is not imperceptible; although it only covers
five percent of the input image, the patch is easily visible.
Furthermore, in contrast to an FGSM attack, the adversar-
ial patch does not require access to the model’s test-time
gradient. On the Selwyn dataset, the patch resulted in an
mAP30 of 0.23 and an mAP40 of 0.12; these numbers are by
far the best performance on images perturbed with a patch.
This result - that our patch was not particularly effective
on Selwyn images - is unsurprising for multiple reasons:
Our model performed the best on the unperturbed Selwyn
dataset, and the Selwyn dataset is also significantly smaller
(232 images) than the Utah (1247 images) and Toronto (882
images) ones. As a result, our validation dataset - which
was used to train the patch - contained far fewer of these
examples. Thus, the patch was not adversarially trained on
as many Selwyn images.

Figure 8: Example of our adversarial patch superim-
posed against a black background. As in Equation
(2), the patch was trained using transformations that
included random translations in an input image and
random rotations.

Figure 9: On the left, our model detects the edge of
the red car in the driveway. On the right, with the
patch added, the model outputs no confident predic-
tion.

We trained multiple adversarial patches on our validation
set of images. As in the open-source implementation we
used,39 we initialized the patch to be a random single color.
Then, using the validation set of images, we optimized the
patch across different rotations and translations in input im-
ages. Figure 8 displays one of the patches trained from the
validation set. Although it is difficult to speculate about
the features that are present on the patch, it is possible that
the lines and green regions reflect features learned during
the training process to signify the presence or absence of a
car. Because patches are randomly initialized, rotated, and
translated, other patches trained on the validation set appear
very different.

Ultimately, although our patch and FGSM attacks were
effective in multiple cases, we initially expected them to
be far more capable of undermining our object recognition
model. In “Explaining and Harnessing Adversarial Exam-

39. “jhayes14/adversarial-patch: PyTorch implementation of adversarial
patch” 2019.
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Figure 10: On the left, our model accurately identifies
the car. On the right, with the patch added, our model
outputs multiple false positives.

ples,” an FGSM attack yields over 85% misclassification
rate on the MNIST with ε = 0.1. Even though we made
smaller perturbations to input images by setting ε = 0.05,
and detecting cars in the COWC dataset is significantly
more complex than MNIST classification, we initially ex-
pected FGSM attacks to yield significantly lowermAP val-
ues for our network. The latest adversarial patch literature
has also suggests that our attacks could have been far more
effective; one published paper reports that a single patch
could cause YOLO mAP to drop to below 1%.40 More ex-
periments - such as using only Utah or Toronto images for
training and testing - could lend insight into these dispari-
ties.

6. Conclusion and future work
Our results provide compelling insights into how adver-

sarial attacks could be used to undermine object detectors
trained on satellite imagery. Random noise was not particu-
larly effective in reducing our classifier’s mAP, thus sug-
gesting that our object detector is robust to minor, non-
localized perturbations in input images. However, in some
cases, random noise caused the classifier to predict bound-
ing boxes that had a lower IoU with ground truth labels. In
contrast, FGSM attacks unsurprisingly reduced our model’s
mAP below the values reported when just using random
noise. However, FGSM is a whitebox attack that requires
knowing or approximating the model’s gradient. Although
both FGSM and random noise attacks yield relatively im-
perceptible modifications to input images, FGSM attacks
proved more effective.

Applying an adversarial patch represented our most so-
phisticated attack mechanism and required training across
a validation set of over two thousand images. Random
variation in initialization and training yielded patches with
vastly different appearances. Even without access to the
model’s test-time gradient, this attack mechanism did suc-
cessfully reduce our models’ mAP to a greater extent than

40. Liu et al. 2019.

our baseline attack using random noise. Yet, using an ad-
versarial patch as a real-world blackbox attack mechanism
may be impractical; creating the patch requires access to the
model’s gradient, and the patch itself is easily spotted dur-
ing visual inspection. However, as academic literature con-
tinues to study object detectors’ susceptibility to adversarial
attacks, our work demonstrates how some models could be
compromised using this technique.

Given these experiments in undermining our satellite
imagery object detector, we identified multiple promising
areas of future work in this project. Instead of simply
training a circular patch applied to an image, we were in-
terested in adversarially training a camouflage patch that
could be intelligently applied to objects, such as the sur-
face of cars. This application presents clear national se-
curity significance as adversarial camouflage could poten-
tially be used to impede detection of cars or other objects.
Furthermore, instead of testing and optimizing our attacks
on Tiny-YOLOv3, we are interested in experimenting with
the full YOLOv3 network (or potentially R-CNN models as
well). Finally, applying algorithms for defending YOLOv3
from adversarial attacks or detecting adversarial perturba-
tions represents another compelling area for future research.
Thus, there are numerous exciting avenues for additional
projects stemming from this work.

7. Contributions and Acknowledgements
Andrew Milich completed the entirety of this project.

During the proposal and implementation process, CS 231n
TAs Andrew Han, William Shen, and Saahil Agrawal pro-
vided helpful direction and guidance. Initially, I focused
on generating adversarial examples in the context of detect-
ing ship positions on the ocean (this was the focus of my
project update). However, I subsequently decided to tran-
sition to using a more complex dataset (COWC) and object
detection model (YOLOv3).

All open-source and customized deep learning models
were implemented using PyTorch.41 For data processing,
creating an adversarial patch, and image manipulation, we
also used Scipy and Numpy.42 We used an open-source Py-
Torch implementation of YOLOv343 for training an object
detector on the COWC dataset.44 When creating our adver-
sarial patch, we used elements of an open-source PyTorch
implementation;45 however, we also wrote a customized
method for transforming the patch and applying it to im-
ages.

41. “PyTorch” 2019.
42. Jones, Oliphant, and Peterson 2014; Developers 2013.
43. “michhar/pytorch-yolo-v3-custom: A PyTorch implementation of

the YOLO v3 object detection algorithm for training on custom data with
video demo.” 2019.

44. Mundhenk et al. 2016.
45. “jhayes14/adversarial-patch: PyTorch implementation of adversarial

patch” 2019.
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